COMP 617 RAP Seminar, Fall 2006
Presentor: Walid Taha
Scribe: Gregory Malecha
09/27/2006

This lecture was an introduction to type systems focusing on what it means for a
language to be type-safe.

1 Type Safety

A typed language is defined as a tuple (S,—:S — S,F: S+ bool, V : set) where:
e S is the set of terms (defined by syntax),

e — is the reduction semantics to use, generally small-step semantics,
e | is the typing predicate, and

e V is the set of values

Type safty is a property which relates the semantics of a language to the type system.
We want to be guaranteed two things when executing, preservation and progress.

e Progress says that a well typed term is either a value or can be reduced by one of
the rules given in the operational semantics.

e Preservation says that reduction on a well typed term yields a well-typed term.
Based on the above definition, we define a type safe language to be one in which
Ve,tobe:t—edV—oIede—e Abe it

It is important to notice that the type t is preserved completely. This property must hold
even in type-systems which allow subtyping, i.e. it is not sufficient for initial ¢ to be a
super type of the final ¢.

The multiple implies operations in the above statement make it difficult to read. The
following form is considerably easier to read.

Ve,t.(-Fe:theg¢V)—Tee—e N-Fe:t

Two ways to verify the equivalence of the statements are to use the equivalence A — B =
- AV B, or to simply enumerate all possibilities of each predicate using a truth table. In
general, (A— B) - C=(AANB) - C.

This result has an interesting result based on the Curry-Howard isomorphism which
relates type systems to proofs. Using the Curry-Howard isomorphism, we can relate the
equality to:

A—-B—-(C= (AxB)—C

Which we refer to as Currying. In general, the idea of decomposing a function of multiple

arguements into a series of functions which return functions. In implementation this
would look like:

Axyz.tE)\lX.)\y.)\z.t

2 Typing Rules in _.

The typing rules for A_, are embodied in the following rules:

[(z) =t Fiz:the:ty

Fl—x:tT_var L' Mve:t; —ty

T-Abs

F|_€21t1 Fl—el

: tl — tQ
T-A
F|_61€21t2 pp

3 Proving Type Safty for _

In order to prove type safty, we start by proving a lemma called the substitution lemma.
The lemma states:

r:itibeitA-Fey:t;i — - -Fefr=e]:t

This can be proven via straightforward induction on typing judgements.
Based on the above lemma, we can prove the type safty of A_, using structural induc-
tion on terms. To do this we consider the types of terms in S.

1.

For the case e = x, the statement is vacuously true since the type system does not
assign a type to free variables.

. For the case e = A\x.eq, the statement is again vacuously true since e € V.

For the case e = e; eg, the one of two semantic rules apply depending on whether
e; € V. Therefore, we perform case analysis.

(a)

e = ej ey where e; ¢ V. We know that if ej ey is typeable then e; and e
are independently typeable with types ¢t; — ¢ and t; respectively. Since e; is
typeable and has size smaller than the size of e; e5, by the inductive hypothesis
we know that there exists some ¢’ such that if e; — eg and - F €' : t; — t.
Applying the substitution lemma here yields that e; e5 is typeable with type ¢
which is what we wanted to show.

e = Ar.eges. We know that if \z.ezes is typeable then A\ x. e3 and ey are
independently typeable with types t; — ¢ and t; respectively. Furthermore,
based on T-Abs, we can conclude that x : t; F e3 : t. By (-reduction we
know that ¢ = e3[z = es]. Applying the substitution lemma yields that this is
typeable with type t.

Based on the properties of structural induction, this holds for all s € S.

