
COMP 617 RAP Seminar, Fall 2006
Presentor: Walid Taha

Scribe: Gregory Malecha
09/27/2006

This lecture was an introduction to type systems focusing on what it means for a
language to be type-safe.

1 Type Safety

A typed language is defined as a tuple (S, 7→: S ⇀ S,`: S 7→ bool, V : set) where:

• S is the set of terms (defined by syntax),

• 7→ is the reduction semantics to use, generally small-step semantics,

• ` is the typing predicate, and

• V is the set of values

Type safty is a property which relates the semantics of a language to the type system.
We want to be guaranteed two things when executing, preservation and progress.

• Progress says that a well typed term is either a value or can be reduced by one of
the rules given in the operational semantics.

• Preservation says that reduction on a well typed term yields a well-typed term.

Based on the above definition, we define a type safe language to be one in which

∀e, t.· ` e : t → e /∈ V → ∃e′.e 7→ e′ ∧ · ` e′ : t

It is important to notice that the type t is preserved completely. This property must hold
even in type-systems which allow subtyping, i.e. it is not sufficient for initial t to be a
super type of the final t.

The multiple implies operations in the above statement make it difficult to read. The
following form is considerably easier to read.

∀e, t.(· ` e : t ∧ e /∈ V) → ∃e′.e 7→ e′ ∧ · ` e′ : t

Two ways to verify the equivalence of the statements are to use the equivalence A → B ≡
¬A ∨B, or to simply enumerate all possibilities of each predicate using a truth table. In
general, (A → B) → C ≡ (A ∧B) → C.

This result has an interesting result based on the Curry-Howard isomorphism which
relates type systems to proofs. Using the Curry-Howard isomorphism, we can relate the
equality to:

A → B → C =⇒ (A×B) → C

Which we refer to as Currying. In general, the idea of decomposing a function of multiple
arguements into a series of functions which return functions. In implementation this
would look like:

λ x y z. t ≡ λ x. λ y. λ z. t
1



2 Typing Rules in λ→

The typing rules for λ→ are embodied in the following rules:

Γ(x) = t
T-Var

Γ ` x : t

Γ, x : t ` e : t2
T-Abs

Γ ` λx.e : t1 → t2

Γ ` e2 : t1 Γ ` e1 : t1 → t2 T-App
Γ ` e1 e2 : t2

3 Proving Type Safty for λ→

In order to prove type safty, we start by proving a lemma called the substitution lemma.
The lemma states:

x : t1 ` e1 : t ∧ · ` e2 : t1 → · ` e1[x = e2] : t

This can be proven via straightforward induction on typing judgements.
Based on the above lemma, we can prove the type safty of λ→ using structural induc-

tion on terms. To do this we consider the types of terms in S.

1. For the case e = x, the statement is vacuously true since the type system does not
assign a type to free variables.

2. For the case e = λx.e1, the statement is again vacuously true since e ∈ V.

3. For the case e = e1 e2, the one of two semantic rules apply depending on whether
e1 ∈ V. Therefore, we perform case analysis.

(a) e = e1 e2 where e1 /∈ V. We know that if e1 e2 is typeable then e1 and e2

are independently typeable with types t1 → t and t1 respectively. Since e1 is
typeable and has size smaller than the size of e1 e2, by the inductive hypothesis
we know that there exists some e′ such that if e1 7→ e2 and · ` e′ : t1 → t.
Applying the substitution lemma here yields that e1 e2 is typeable with type t
which is what we wanted to show.

(b) e = λx.e3 e2. We know that if λx.e3 e2 is typeable then λ x. e3 and e2 are
independently typeable with types t1 → t and t1 respectively. Furthermore,
based on T-Abs, we can conclude that x : t1 ` e3 : t. By β-reduction we
know that e′ = e3[x = e2]. Applying the substitution lemma yields that this is
typeable with type t.

Based on the properties of structural induction, this holds for all s ∈ S.

2


