
Dependently Type Pattern Matching
Summary

Gregory Malecha

January 29, 2008

The paper develops pattern matching in DML, a dependently typed lan-
guage based on SML which was presented in previous work. The paper is
founded in two main technical contributions.

The first contribution is an understanding of a disconnect between static
and dynamic semantics of case expressions. While the specification states
that the order in which patterns are checked is non-deterministic, during
execution branches are tested sequentially. This difference is handled by
ensuring that overlapping patterns do not exist which can be performed while
the exhaustiveness of the patterns is checked.

The previous contribution gives way to the second contribution which is
a procedure for computing a minimal extension to a pattern set so that the
pattern set covers all possible values in the type. This procedure handles
dependently typed data in addition to standard data types.

The technical contributions of the work are grounded in two applications.
The first is the ability to automatically expand general cases to make code
more compact and maintainable. The second application deals with opti-
mizing code based on dependent types; in particular, eliminating redundant
tests during pattern matching, which, experimental results show, can result
in considerable increases in performance (up to 34% with the SML compiler).

1


