
Review and Most General Types

Highlights from last lecture

! One function:
;; below : lon number -> lon
;; to construct a list of those numbers

;; in alon that are below t

(def ine (below alon t)

 (cond [(empty? alon) empty]

 [else (cond [(< (first alon) t)
 (cons (first alon) (below (rest alon) t))]

 [else (below (rest alon) t)])]))

Highlights from last lecture

! Another function:
;; above : lon number -> lon
;; to construct a list of those numbers

;; in alon that are above t

(def ine (above alon t)

 (cond [(empty? alon) empty]

 [else (cond [(> (first alon) t)
 (cons (first alon) (above (rest alon) t))]

 [else (above (rest alon) t)])]))

Highlights from last lecture

! Capture the pattern:
;; filter : comparison lon number -> lon
;; to construct a list of those numbers n

;; in alon such that (test t n) is true

(def ine (filter test alon t)

 (cond [(empty? alon) empty]

 [else (cond [(test (first alon) t)
 (cons (first alon) (filter test (rest alon) t))]

 [else (filter test (rest alon) t)])]))

Highlights from last lecture

! Write things more concisely:
! The magic moment:

 (define (above alon t) (filter > alon t))

 (define (below alon t) (filter < alon t))

! Both functions will work just as before

Highlights from last lecture

;; filter : (number number -> boolean) lon number -> lon
;; to construct a list of those numbers n
;; in alon such that (test t n) is true
(def ine (filter test alon t)
 (cond [(empty? alon) empty]
 [else (cond [(test (first alon) t)
 (cons (first alon) (filter test (rest alon) t))]
 [else (filter test (rest alon) t)])]))

Highlights from last lecture

;; filter :(X, Y -> boolean), [X] , Y -> [X]
;; to construct a list of those numbers n
;; in alon such that (test t n) is true
(def ine (filter test alon t)
 (cond [(empty? alon) empty]
 [else (cond [(test (first alon) t)
 (cons (first alon) (filter test (rest alon) t))]
 [else (filter test (rest alon) t)])]))

Examples:

! append: [X] , [X] -> [X]
! length: [X] -> natural
! my-first: [X] -> X
! my-rest: [X] -> [X] or false
! my-cons: X, [X] -> [X]
! my-empty: [X]
! compose-functions: ?

Polymorphic Data Definitions

; A Pair of X and Y, written (Pair X Y) is
; (make-Pair a b)
; Where a is an X and b is a Y
(define-struct Pair (first second))

! Examples:
! (make-Pair Õa 5) is (Pair symbol number)
! (make-Pair true 5) is (Pair bool number)

Most General Type

! For any expression, we can ask about
its most general type (MGT)

! Example: empty has the MGT É ?É

! Generality comes from type variables
(written X, Y, Z, É)

! DonÕt use ÒanyÓ or ÒorÓ to get MGT
! We wonÕt give you problems that hard

Most General Type

! For any expression, we can ask about
its most general type (MGT)

! Example: empty has the MGT [X]

! Generality comes from type variables
(written X, Y, Z, É)

! DonÕt use ÒanyÓ or ÒorÓ to get MGT
! We wonÕt give you problems that hard

Examples:

WhatÕs the most general type for:
! (define (f x) x)

! (define (f x) (make-Pair x x))

! (define (f y x) (make-Pair x y))

Examples:

WhatÕs the most general type for:
! (define (f x) x)

! X -> X

! (define (f x) (make-Pair x x))
! X -> (Pair X X)

! (define (f y x) (make-Pair x y))
! X Y -> (Pair Y X)

Examples:

WhatÕs the most general type for:
! (define (f x y) (make-Pair x (+ 1 y)))

! (define (f x y) (make-Pair x (+ 1 x)))

! (define (f x y) (make-Pair x (y x)))

Examples:

WhatÕs the most general type for:
! (define (f x y) (make-Pair x (+ 1 y)))

! X number -> (Pair X number)

! (define (f x y) (make-Pair x (+ 1 x)))
! number number -> (Pair number number)

! (define (f x y) (make-Pair x (y x)))
! X (X -> Y) -> (Pair X Y)

Examples:

WhatÕs the most general type for:
! (define (f x) (+ x 1))

! (define (f x) (cons x empty))

! (define (f x y) (cons x y))

Examples:

WhatÕs the most general type for:
! (define (f x) (+ x 1))

! number -> number

! (define (f x) (cons x empty))
! X -> [X]

! (define (f x y) (cons x y))
! X [X] -> [X]

Example:

(define (reduce base combine l)
 (cond
 [(empty? l) base]
 [else
 (combine
 (first l)
 (reduce base combine (rest l)))]))

For Next Class

! Homework already online, due
Wednesday

! Reading:
! Ch 21: Using functional abstraction and

polymorphism

! Quiz on reading

