!'_ Review and Most General Types

i Highlights from last lecture

. One function:

;; below : lon number -> lon
;; to construct a list of those numbers
;; In alon that are below t
(define (below alon t)
(cond [(empty? alon) empty]
[else (cond [(< (first alon) t)
(cons (first alon) (below (rest alon) t))]
[else (below (rest alon) t)])]))

i Highlights from last lecture

. Another function:

;; above : lon number -> lon
;; to construct a list of those numbers
;; In alon that are above t
(define (above alon t)
(cond [(empty? alon) empty]
[else (cond [(> (first alon) t)
(cons (first alon) (above (rest alon) t))]
[else (above (rest alon) t)])]))

i Highlights from last lecture

. Capture the pattern:

;; filter : comparison lon number -> lon
;; to construct a list of those numbers n
;; In alon such that (test t n) Is true
(define (filter test alon t)
(cond [(empty? alon) empty]
[else (cond [(test (first alon) t)
(cons (first alon) (filter test (rest alon) t))]
[else (filter test (rest alon) t)])]))

i Highlights from last lecture

. Write things more concisely:
. The magic moment:

(define (above alon t) (filter > alon t))

(define (below alon t) (filter < alon t))

. Both functions will work just as before

Highlights from last lecture

;; filter : (number number -> boolean) lon number -> lon
;; to construct a list of those numbers n
;; In alon such that (test t n) is true
(define (filter test alon t)
(cond [(empty? alon) empty]
[else (cond [(test (first alon) t)
(cons (first alon) (filter test (rest alon) t))]
[else (filter test (rest alon) t)])]))

i Highlights from last lecture

;; filter :(X, Y -> boolean), [X], Y-> [X]

;; to construct a list of those numbers n

;; In alon such that (test t n) is true

(define (filter test alon t)

(cond [(empty? alon) empty]
[else (cond [(test (first alon) t)
(cons (first alon) (filter test (rest alon) t))]
[else (filter test (rest alon) t)])]))

i Examples:

- append: [X], [X] -> [X]
. length: [X] -> natural

- my-first:
. my-rest:

X -> X
X

-> [X] or false

. my-cons: X, [X] -> [X]
- my-empty: [X]
. compose-functions: ?

i Polymorphic Data Definitions

, A Pair of Xand Y, written (Pair XY) IS
, (make-Pair a b)

, Whereaisan XandbisayY
(define-struct Pair (first second))

. Examples:
. (make-Pair @ 5) is (Pair symbol number)
. (make-Pair true 5) is (Pair bool number)

i Most General Type

—Or any expression, we can ask about
Its most general type (MGT)

. Example: empty has the MGT E ?E

. Generality comes from type variables
(written X, Y, Z, E)

. Don®use GinyOor @rOto get MGT
. We won®give you problems that hard

i Most General Type

—Or any expression, we can ask about
Its most general type (MGT)

- Example: empty has the MGT [X]

. Generality comes from type variables
(written X, Y, Z, E)

. Don®use GinyOor @rOto get MGT
. We won®give you problems that hard

i Examples:

What@® the most general type for:
. (define (f x) x)

. (define (f x) (make-Pair x x))

- (define (f y x) (make-Pair x y))

i Examples:

What@® the most general type for:
. (define (f x) x)
 X-> X
. (define (f x) (make-Pair x x))
- X -> (Pair X X)
- (define (f y x) (make-Pair x y))
- XY -> (Pair Y X

i Examples:

What@® the most general type for:
. (define (f x y) (make-Pair x (+ 1vy)))

. (define (f x y) (make-Pair x (+ 1 x)))

. (define (f x y) (make-Pair x (y x)))

i Examples:

What@® the most general type for:
. (define (f x y) (make-Pair x (+ 1vy)))
.~ X number -> (Pair X number)
. (define (f x y) (make-Pair x (+ 1 x)))
. number number -> (Pair number number)

. (define (f x y) (make-Pair x (y x)))
- X(X->Y) -> (Pair XY)

i Examples:

What@® the most general type for:
 (define (f x) (+ x 1))

. (define (f x) (cons x empty))

. (define (f x y) (cons xy))

i Examples:

What@® the most general type for:
. (define (f x) (+ x 1))

. number -> number
- (define (f x) (cons x empty))

- X-> [X
. (define (f xy) (cons xy))

- X [X] -> [X]

i Example:

(define (reduce base combine |)
(cond
[(empty? |) base]
[else
(combine
(first 1)
(reduce base combine (rest [)))]))

i For Next Class

. Homework already online, due
Wednesday

. Reading:

. Ch 21: Using functional abstraction and
polymorphism

- Quiz on reading

