Syntax and Semantics of
Beginner Scheme

DE D EOE N e

Today@ Goals

m Backus-Naur Form (BNF)
m Defining a grammar

m Review of semantics

B Semantic equivalences

m Runtime errors

Backus-Naur Form (BNF)

m Lang-1 = {Ringo, Bingo}
m <exp-1> ::= Ringo | Bingo

mlLang-2={A,AB,ABB,ABBB, E}
m<exp-1>:=A|<exp-1>B

m Used to define simple grammar/syntax

Beginner Scheme Grammar
<var> :=x]|y|my-posn|E

<con> ::=true | false | @ | @abbit | E
<prm> =+ |-|*|E

= Using & Oin a BNF is a bit informal

(cond (<exp> <exp>)*)

(cond (<exp> <exp>)" (else exp))
(and <exp> <exp>*)

(or <exp> <exp>*)

<val> :=<con>

Beginner Scheme Grammar
<exp> :=<var>|<con>
(<prm> <exp>")
(<var> <exp>")
=

Beginner Scheme Grammar

g <def>
0

(C

(C

.= (define <var> <exp>)

efine (<var> <var>*) <exp>)
efine-struct <var> (<var>"))

Reductions

= Define semantics or @neaningOof programs

= Mostly as we have seen so far

m Some definitions have semantics

m Some definitions introduce other definitions

= What do we do with runtime errors?

Making things explicit

m Start with whatever can be evaluated,
and Is outermost leftmost.

What do we do with semantics?

m One use: Some programs have
b Different syntax
b But same semantics

m Example
b (and <expl> <exp2>)
b (cond [<expl> <exp2>] [else false])

b (or <expl> <exp2>)
b (cond [<expl> true] [else <exp2>])

Runtime

m What really happens when we write

(/10)
= /. divide by zero

For Next Class

m Homework will be posted later today

m Reading:
b Chapter 9 and companion notes
PLists: Our first recursively defined type

m Quiz:
b Chapter 9

