
Varieties

TodayÕs Goals

 Predicates on types
 Varieties

ÐRecognizing them in problem descriptions
ÐTemplate for using varieties
ÐComposing functions that use varieties

 Catching mistakes and raising errors

Type Predicates

 In Scheme, we can test for some types:
Ð (number? 1) = true
Ð (boolean ? 1) = false
Ð (symbol? ÕShip) = true
Ð (struct ? 7) = false

 We get new tests from define-struct:
Ð (define-struct posn (x y))
Ð (posn? (make-posn 1 2)) = true

Varieties

 A problem description might say
Ð ÒÉ we will model two kinds of fruit: apples and

oranges.Ó
Ð ÒÉ the stock recommendation may be buy, sell, or

hold.Ó
Ð ÒÉ a shape can be a triangle or a square.Ó
Ð ÒÉ marine and land vehicles will each have

different properties.Ó

 Need types that can be one of many

Program Design: Data definition

 Problem description
Ð ÒÉ a shape can be a triangle or a square.Ó

 Data definition:
;; A shape is either
;; 1. A triangle (make-triangle b h)
;; where b and are numbers, or
;; 2. A square (make-square s)
;; where s is a number
(define-struct triangle (base height))
(define-struct square (side))

Creating and Using Varieties

;; A shape is either
;; 1. A triangle (make-triangle b h)
;; where b and h are numbers, or
;; 2. A square (make-square s)
;; where s is a number

 Creation is just structure creation
 Use is more interesting

;; my-shape : shape
 (cond [(triangle? my-shape) É]
 [(square? my-shape) É])

Program Design: Template

 Recipe for functions that consume
varieties
;; area-of-shape : shape -> number

 Data definition (previous slide)
 Function template

ÐEssentially the same as before
ÐBut includes a bit more information

 Code

Template

;; f : shape -> É
(define (f x)
 (cond [(triangle? x)
 É (triangle-base x)
 É (triangle-height x)]
 [(square? x)
 É (square-side x)]))

Code

;; area : shape -> number
(define (area x)
 (cond [(triangle? x)
 (* 0.5 (* (triangle-base x)
 (triangle-height x)))]
 [(square? x)
 (sqr (square-side x))]))

The Design Recipe

How should I go about writing programs?

1. Analyze problem and define data types
2. State contract and purpose for function
3. Give examples of function use and result
4. Write the function itself following template from 1.
5. Test it, and record actual results of tests

The order of the steps of the recipe is important

Raising errors

 Type predicates let us check contracts
 Most functions are defined on specific types
 Good errors messages make programs more

useful

 (define (area my-shape)
 (cond [(triangle? my-shape) É]
 [(square? my-shape) É]
 [else (error Õarea ÒUnknown shapeÓ)]))

For Next Class

 Homework due on Monday

 Reading:
Ð Chapter 8 and companion notes
Ð Uses all the type-definition tools to review all of

Beginner Scheme

 Quiz:
Ð Chapter 8

