
Effects and Structures

TodayÕs Goals

! Effects and effectful functions
! More about and
! Structures

ÐWhen do you need them
ÐMaking new types (define-struct É (É))
ÐBuilding and using structures
ÐDesigning programs that use structures

Effects

! Anything beyond normal math functions
! Examples:

Ð Stopping with an error
Ð Drawing on the screen
Ð Reading an input
Ð Buying the groceries for the week

! ÒEffectful functionsÓ:
Ð A convenient way to do effects
Ð Idea: If function completes, return true
Ð Otherwise, program stops with an error

More about and

! It can take more than two arguments
 (and true true false true (= 1 (/ 2 0)) É)
= false

! This behavior is called ÒlazyÓ / Ònon-strict
Ð Starts evaluating left argument, moves right
Ð If anything evaluates to false, it returns false
Ð If all arguments evaluate to true, returns true

! Aside: What would or do?
! and is for sequencing effects

Ð (and (draw-house) (draw-road) (draw-yard) É)

Structures (records, tuples, É)

! Consider problem descriptions that say
Ð ÒÉ Each university course will have an associated

department and course numbers, as well as a
class sizeÓ

Ð ÒÉ A vehicle has a VIN number, model, year,
engine size, and passenger capacityÓ

Ð ÒÉ For each house, we will keep a record of room
numbers, area, and priceÓ

! How do we keep such data in one place?

Program Design: Data definition

! Problem description
Ð ÒÉ Each university course will have an associated

department and course numbers, as well as a
class sizeÓ

! Data definition
;; A course is a structure
;; (make-course dept num size)
;; where dept is a symbol, and num
;; and size are numbers
(define-struct course (dept num size)

Creating and Using Structures

! Syntax for creating a structure:
 (define this-class (make-course ÕCOMP 210 50))

! A structure is a value

! Syntax for extracting fields
 (course-dept this-class)

! Reduction for field extraction
 (course-dept this-class)
= (course-dept (make-course ÕCOMP 210 50))
= ÕCOMP

Program Design: Template

! Recipe for functions that consume structures
 ;; big-class? : course -> bool

! Data definition
É
(define-struct course (dept num size)

! Template for function consuming ÒcourseÓ
 ;; (define (f c)
 ;; É (course-dept c) É
 ;; É (course-num c) É
 ;; É (course-size c) É)

Program Design: Code

! Template for function consuming ÒcourseÓ
 ;; (define (f c)
 ;; É (course-dept c) É
 ;; É (course-num c) É
 ;; É (course-size c) É)

! Templates will help us write the code
 (define (big-class? c)
 (< 30 (course-size c)))

! Most sophisticated functions will use the
whole template

For Next Class

! Homework will be posted later today

! Reading:
Ð Chapter 7 and companion notes
Ð This will give us (almost) all the type-definition

tools we need for the course

! Quiz:
Ð Chapter 7

