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Problem 1. (10 points) Given the following definition for the function f

(define (f a)

(cond [(and (symbol? a) (= ’a 1)) (or false (/ 1 0))]

[(or (number? ’a) (= a 2)) (/ a 0)]))

hand evaluate the expression (f 2). Make sure that you perform evaluation in the same
way that DrScheme evaluates programs.

Solution:

(define (f a)

(cond [(and (symbol? a) (= ’a 1)) (or false (/ 1 0))]

[(or (number? ’a) (= a 2)) (/ a 0)]))

(f 2)

= (cond [(and (symbol? 2) (= ’a 1)) (or false (/ 1 0))]

[(or (number? ’a) (= 2 2)) (/ 2 0)])) //Substitution: 2 points

= (cond [(and false (= ’a 1)) (or false (/ 1 0))] //symbol?: 1 point

[(or (number? ’a) (= 2 2)) (/ 2 0)]))

= (cond [false (or false (/ 1 0))] //(and false...): 1 points

[(or (number? ’a) (= 2 2)) (/ 2 0)]))

= (cond [(or (number? ’a) (= 2 2)) (/ 2 0)])) //cond [false ...: 1 points

= (cond [(or false (= 2 2)) (/ 2 0)])) //number?: 1 points

= (cond [(or false true) (/ 2 0)])) //(= 2 2): 1 points

= (cond [true (/ 2 0)]) //(or #f #t...): 1 points

= (/ 2 0) //cond [true ...: 1 points

= / : divide by zero //Correct answer: 1 points

Common Problems:

• Skipping steps. If a step was not explicitly performed, but it was obvious that the
step was performed correctly due to later steps, then only some of the points were lost.
If there was no way to determine if the step was performed correctly, then all of the
points were deducted.

• Substituting 2 for the symbol ‘a, or failing to substitute 2 for a until later in the
evaluation.
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• Continuing to evaluate (and false (= ‘a 1)) to (and false false).

• Failing to throw away the false part of a cond.
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Problem 2. (10 points) A value is a Scheme program that cannot be reduced any further.
Which of the following are values? Write YES or NO next to each one.

Solution: Interleaved with rest of problem statement. Each sub-problem was worth 1
points.

- ’x

– Yes. Any symbol is a value.

- (cons (f 5) empty)

– No. This term is not a value because (f 5) still needs to be reduced.

- (cons 5 6 empty)

– No. Cons takes two arguments, so, this is not even a syntactically valid expression.

- false

– Yes. This is one of the two values used for booleans.

- (rest (cons 5 empty))

– No. Rest computes the tail of a list. Here it returns empty.

- (make-posn 5 6)

– Yes.

- (and true true)

– No. And is a primitive operation. This term evaluates to true.

- (cons (cons empty empty) empty)

– Yes. This is an example value for a list of lists.

- (cons false empty)

– Yes. This is a list of booleans, and the list has only one element.

- (cons empty false)

– No. Remember that cons actually takes its value to make sure that its second
argument is a list.
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Problem 3. (30 points) An odd list (OL, for short) is a peculiar data type. For example,
an OL can never be empty, and it can never contain an even number of elements. This way,
any OL will have an odd length. A customer asked that we define and use our own OL
data type in the software we build for their project. The OL data type must be either one
element, or a structure consisting of two elements and another odd list.

i. Write down a data type definition for an odd list of numbers (OLN). Define and use a
different structure for each variety in your data type definition.

– 10 points

(define-struct OLE (head) ; an odd-list-element

(define-struct OL (head-1 head-2 tail)) ; an odd-list

; an OLN is either

; (make-OLE n)

; (make-OL n1 n2 oln)

; where n, n1, n2 are numbers and oln is a OLN

ii. Write down three different examples of an OLN

– 10 points

(define oln1 (make-OLE 0))

(define oln2 1 2 oln1)

(define oln3 1 2 oln2)

iii. Write down the template for a function that uses an OLN

– 5 points

; f : OLN -> ...

; (define (f x)

; (cond [(OLE? x) ... (OLE-head x) ... ]

; [else ... (OL-head-1 x) ... (OL-head-2 x) ...

(f (OL-tail x)) ...]))

iv. Write down a function that counts the non-zero elements in a given OLN

– 5 points

; count : OLN -> number

(define (count x)

(cond [(OLE? x) (count-non-zero (OLE-head x))]

[else (+ (count-non-zero (OL-e1 x))

(count-non-zero (OL-e2 x))

(count (OL-ol x)))]))
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; count-non-zero : number -> number

(define (count-non-zero x)

(if (> x 0) 1 0))

Common Problems:

• In (i), Not defining OLN using structures

• In (ii), Inconsistency between examples and data type definition

• In (iii), Inconsistency between template and data type definition

• In (iii), When handling the recursive variety of OLN, not referring to both the first
and second elements

• In (iv), Recurring on non-OLNs (a strong hint of an inferior solution)

• In (iv), Not abstracting multiple tests for non-zero
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Problem 3. (Additional space for your solution)
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Problem 4. (20 points)

i. Is it possible to define the list construct as a function? If yes, give the definition. If
not, explain why.

• 5 points

We do not yet know how to define list as a function because it takes an arbitrary
number of arguments.

ii. Expand ’((1 2) (list 3 4) 5) into an expression that uses only empty, cons, num-
bers, booleans and symbols (as needed).

• 15 points

As an intermediate step we can expand the above to:

(list (list 1 2)

(list ’list 3 4)

5)

From this we can get to the final answer:

(cons (cons 1 (cons 2 empty)) // Line 1

(cons (cons ’list (cons 3 (cons 4 empty))) // Line 2

(cons 5 empty))) // Line 3

// Line 4

// parens

// ’list
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Problem 5. (30 points)

Respond to the following questions with a brief (2-4 sentence) answer.

i. The design recipe that we have learned about in this course has several components.
One of these components is the design template. What is the purpose of the design
template? How does it help us solve problems?

• 6 points

The design template makes explicit the strong connection between data struc-
ture definitions and program design. In other words, data design drives program
design.

ii. As part of our problem-solving skills, we learned guidelines for using variable and
function declarations. When is it a good idea to define a separate function?

• 6 points

We have seen two fundamental reasons for using separate functions. First, we
should use a separate function for each distinct data type that we use; second, we
should abstract common expressions into functions.

iii. How do Scheme functions differ from mathematical functions?

• 6 points

One thing to note about Scheme functions is that order can be significant. For
example, when applying a function, argument are evaluated in left-to-right order.
Also the Scheme functions and and or use short-circuited evaluation. (We will
learn more about modelling this later.)

More deeply, Scheme functions can cause side effects such as generating exceptions
and (as we will see later) changing the values of variables. When combined with
order, programs with side-effects can have very subtle behaviors!

It should be noted that while Scheme’s syntax is ‘prefix’ and while we do com-
monly write mathematical algebraic functions in ‘infix’ notation, this is really an
artificial distinction. It should also be noted that mathematical functions can
operate over non-numerical data, two examples being sets or logical values.

iv. What two different ways did we study for defining natural numbers? What are the
advantages of each of the two representations?

• 6 points

; a natural is

; 0

; (add1 n), where n is a natural

;

; a Natural is

; ’Zero

; (make-nat n), where n is a Natural
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The first definition represents naturals using Scheme’s internal representation and
consequently exploits Scheme’s built-in natural number operators. In contrast,
the second definition represents a natural number by the length of a list (or a
struct-list) and in fact allows us to define the naturals from ‘scratch’. For this
second kind of natural, we must define our own versions of functions such as add
and mult. It is worth noting that this second form consumes significantly more
space than the former.

v. If we want to define natural numbers from scratch, we also have to define addition
and multiplication recursively. Both addition and multiplication are functions of two
arguments. Using the alternative definition that we discussed in class, which of the
two arguments can be used to apply the template for consuming a natural number?

• 6 points

Since both arguments are recursively defined struct-lists, there is no prima facie
reason that we could not apply our (recursive) template to either one. Since
addition and multiplication are both commutative (e.g., a ∗ b = b ∗ a), we can
indeed choose either one.

10



Problem 5. (Additional page for your solution)
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