Map: More on functional

!'_ abstraction and polymorphism

i Quiz Feedback

v ONhy are we working on the abstraction
from templates, when it's a theoretical
aspect of programming?0

v A don@® understand Gimple useQO

v Note 2 said: Simple means that no part of the
debPnition (including auxiliary functions) may
use the template for lists.

COMP 210, Fall 2007 2

i Functional Abstraction

v A powerful tool
v Makes programs more concise
v Avoids redundancy
+ Promotes Gingle point of controlO

v Combined with polymorphic contracts, it Is
even more powerful

v What we cover today for lists appliesto any
type that you can dePne

COMP 210, Fall 2007 3

i Look for the pattern

¥ One function:

; my-funl : [number] -> [number]
, adds one to each number in list
(dePne (my-funll)

(conc

[(empty?|) empty]

else (cons (addl (prst 1))
(my-funl (rest 1)))]))

COMP 210, Fall 2007

i Look for the pattern

¥ Another function function:

, my-fun2 : [boolean] -> [boolean]
, Inverts each boolean in the list
(debPne (my-fun2 1)

(conc

[(empty?|) empty]

else (cons (not (brst 1))
(my-fun2 (rest 1)))]))

COMP 210, Fall 2007

i Codify the pattern

¥ Another function function:
, map : (X ->X), [X] ->[X]
, appliesf to each element in |
(debne (map f 1)
(cond [(empty?|) empty]
[else (cons (T (Prst 1))
(map f (rest 1)))]))

COMP 210, Fall 2007

i Generalize the pattern

¥ Another function function:
, map : (X ->Y), [X] ->[Y]
, appliesf to each element in |
(debne (map f 1)
(cond [(empty?|) empty]
[else (cons (T (Prst 1))
(map f (rest 1)))]))

COMP 210, Fall 2007

i Tip on Generalizing Types

v When we generalize, we only ever replace

v gpecibc types (like nunber or synbol)
v by variables (like X or Y)

v We never replace atype by the Gany Otype,
which actually means

v hunber orbool eanorli st of nunber
orli1st of

COMP 210, Fall 2007 8

i Use the pattern

vy (ma
vy (ma
vy (ma
vy (ma

addl |)

not |)

sqr |)

l ength |)

vy (map first |)

vy (map synbol ? |)

v Note: Other datatypes also have maps!

0
0
0
0
0
0

COMP 210, Fall 2007

i More about Map

v Powerful tool for parallel computing!

v Has elegant properties.
« (map f (mep g 1)) = (map (both f g) 1)
v Soon we will see how to debne bothO

¢+ For fun: Checkout Google3 Gnap/reduceO

COMP 210, Fall 2007 10

i Templates as functions

v Recall the template for lists:
, (define (fun-for-I| 1)

(cond
[(empty? |) .. .]
[else ... (first |)
... (fun-for-l (rest 1))
D))

v Can we passthe"E "s as parameters?

COMP 210, Fall 2007 11

i Templates as functions

¥ It would look just like this:

(define (fun-for-| D, pPs 1)
(cond [(empty?l) p,]
[else (p, (firstl)
(fun-for-| P, P>

(restl)))1))

v Can we express all functions wee written using
fun-for-17?

COMP 210, Fall 2007 12

i Map in terms of Fold (in class)

map @ (X->Y), [X] ->[Y]
(define (map f 1)
(l ocal (define (g x I)

Il g : X[Y] ->1Y]
(cons (f x) |))

(fun-for-I enmpty g |))

COMP 210, Fall 2007

13

i Templates as functions

¥ It would look just like this:

(define (fun-for-I| D, pPs 1)
(cond
[(empty?l) p4]
[else (p, (firstl)
(fun-for-I P, Py
(restl))

v What'sthe MGT for Gun-for-1Cp

y P77

COMP 210, Fall 2007

) 1))

14

i N class

Here Is a step by step derivation
vy XY Z->A

« XY [Z] -> A

« XY [Z] -> X

v X (Z X ->X) [Z] -> X

COMP 210, Fall 2007

i Templates as functions

¥ It would look just like this:

(define (fun-for-| D, pPs 1)
(cond
[(empty?l) p,]
[else (p, (firstl)
(fun-for-| P, Py
(restl))

v What'sthe MGT for Gun-for-ICP
v X (Z X->X) [Z] -> X

COMP 210, Fall 2007

) 1))

16

i M ore about this function (GoldQ

v What other types can it be dePned for?

v How does it help us in programming?

v Canit help in parallel computing?

COMP 210, Fall 2007 17

i For Next Class

v Homework due Wednesday

v Reading:
v Ch 22: Designing with brst class functions

v Quiz on reading

COMP 210, Fall 2007

18

