
1

Map: More on functional
abstraction and polymorphism

COMP 210, Fall 2007 2

Quiz Feedback

¥ ÒWhy are we working on the abstraction
from templates, when it's a theoretical
aspect of programming?Ó

¥ ÒI donÕt understand Ôsimple useÕ.Ó
¥ Note 2 said: Simple means that no part of the

deÞnition (including auxiliary functions) may
use the template for lists.

COMP 210, Fall 2007 3

Functional Abstraction

¥ A powerful tool
¥ Makes programs more concise
¥ Avoids redundancy
¥ Promotes Òsingle point of controlÓ

¥ Combined with polymorphic contracts, it is
even more powerful

¥ What we cover today for lists applies to any
type that you can deÞne

COMP 210, Fall 2007 4

Look for the pattern

¥ One function:
; my-fun1 : [number] -> [number]
; adds one to each number in list
(deÞne (my-fun1 l)

(cond [(empty? l) empty]
 [else (cons (add1 (Þrst l))
 (my-fun1 (rest l)))]))

COMP 210, Fall 2007 5

Look for the pattern

¥ Another function function:
; my-fun2 : [boolean] -> [boolean]
; inverts each boolean in the list
(deÞne (my-fun2 l)

(cond [(empty? l) empty]
 [else (cons (not (Þrst l))
 (my-fun2 (rest l)))]))

COMP 210, Fall 2007 6

Codify the pattern

¥ Another function function:
; map : (X -> X), [X] -> [X]
; applies f to each element in l
(deÞne (map f l)

(cond [(empty? l) empty]
 [else (cons (f (Þrst l))
 (map f (rest l)))]))

COMP 210, Fall 2007 7

Generalize the pattern

¥ Another function function:
; map : (X -> Y), [X] -> [Y]
; applies f to each element in l
(deÞne (map f l)

(cond [(empty? l) empty]
 [else (cons (f (Þrst l))
 (map f (rest l)))]))

COMP 210, Fall 2007 8

Tip on Generalizing Types

¥ When we generalize, we only ever replace
¥ speciÞc types (like number or symbol)
¥ by variables (like X or Y)

¥ We never replace a type by the ÒanyÓ type,
which actually means

¥ number or bool ean or li s t of number
or l i s t of

COMP 210, Fall 2007 9

Use the pattern

¥ (map add1 l)
¥ (map not l)
¥ (map sqr l)
¥ (map l engt h l)
¥ (map f i r st l)
¥ (map symbol ? l)
¥ Note: Other data types also have maps!

COMP 210, Fall 2007 10

More about Map

¥ Powerful tool for parallel computing!

¥ Has elegant properties:
¥ (map f (map g l)) = (map (bot h f g) l)

¥ Soon we will see how to deÞne ÒbothÓ

¥ For fun: Checkout GoogleÕs Òmap/reduceÓ

COMP 210, Fall 2007 11

Templates as functions

¥ Recall the template for lists:
; (def i ne (f un- f or - l l)
; (cond
; [(empt y? l) .. .]
; [el se . . . (f i r st l)
; . . . (f un- f or - l (r est l))
; . . .]))

¥ Can we pass the "É "s as parameters?

COMP 210, Fall 2007 12

Templates as functions
¥ It would look just like this:
 (define (fun-for-l p1 p2 l)
 (cond [(empty? l) p1]
 [else (p2 (first l)
 (fun-for-l p1 p2

 (rest l)))]))

¥ Can we express all functions weÕve written using
f un- f or - l ?

COMP 210, Fall 2007 13

Map in terms of Fold (in class)

map : (X- >Y) , [X] - > [Y]
(def i ne (map f l)
 (l ocal (def i ne (g x l)
 // g : X [Y] - > [Y]
 (cons (f x) l))
 (f un- f or - l empt y g l))

COMP 210, Fall 2007 14

Templates as functions
¥ It would look just like this:
 (define (fun-for-l p1 p2 l)
 (cond
 [(empty? l) p1]
 [else (p2 (first l)
 (fun-for-l p1 p2

 (rest l)))]))

¥ What's the MGT for Òfun-for-lÓ?
¥ ???

COMP 210, Fall 2007 15

In class

Here is a step by step derivation
¥ X Y Z - > A
¥ X Y [Z] - > A
¥ X Y [Z] - > X
¥ X (Z X - > X) [Z] - > X

COMP 210, Fall 2007 16

Templates as functions
¥ It would look just like this:
 (define (fun-for-l p1 p2 l)
 (cond
 [(empty? l) p1]
 [else (p2 (first l)
 (fun-for-l p1 p2

 (rest l)))]))

¥ What's the MGT for Òfun-for-lÓ?
¥ X (Z X - > X) [Z] - > X

COMP 210, Fall 2007 17

More about this function (ÒfoldÓ)

¥ What other types can it be deÞned for?

¥ How does it help us in programming?

¥ Can it help in parallel computing?

COMP 210, Fall 2007 18

For Next Class

¥ Homework due Wednesday

¥ Reading:
¥ Ch 22: Designing with Þrst class functions

¥ Quiz on reading

