!'_ Review and Most General Types



i First, Some Feedback Please

NThe book 1 s gradual
comprehensibility and Is consequently
making It harder an

How many agree?



i Highlights from last lecture

A One function:

;; below : lon number -> lon
;; to construct a list of those numbers
;; In alon that are below t
(define (below alon t)
(cond [(empty? alon) empty]
[else (cond [(< (first alon) t)
(cons (first alon) (below (rest alon) t))]
[else (below (rest alon) t)])]))



i Highlights from last lecture

A Another function:

;; above : lon number -> lon
;; to construct a list of those numbers
;; In alon that are above t
(define (above alon t)
(cond [(empty? alon) empty]
[else (cond [(= (first alon) t)
(cons (first alon) (above (rest alon) t))]
[else (above (rest alon) t)])]))



i Highlights from last lecture

A Capture the pattern:

;; filterl : comparison lon number -> lon

;; to construct a list of those numbers n

;; In alon such that (test t n) is true

(define (filterl test alon t)

(cond [(empty? alon) empty]
[else (cond [(test (first alon) t)

(cons (first alon) (filterl test (rest alon) t))]
[else (filterl test (rest alon) t)])]))



i Highlights from last lecture

A Write things more concisely:
A The magic moment:

(define (below alon t) (filterl < alon t))

(define (above alon t) (filterl > alon t))

A Both functions will work just as before



Highlights from last lecture

;; filterl : (number number -> boolean) lon number -> lon

;; to construct a list of those numbers n

;; In alon such that (test t n) is true

(define (filterl test alon t)

(cond [(empty? alon) empty]
[else (cond [(test (first alon) t)

(cons (first alon) (filterl test (rest alon) t))]
[else (filterl test (rest alon) t)])]))



i Highlights from last lecture

;; filterl :(X'Y -> boolean) [X] Y -> [X]

;; to construct a list of those numbers n

;; In alon such that (test t n) is true

(define (filterl test alon t)

(cond [(empty? alon) empty]
[else (cond [(test (first alon) t)

(cons (first alon) (filterl test (rest alon) t))]
[else (filterl test (rest alon) t)])]))



i Examples:

A length: [X] -> natural
A first: [X] -> X

A rest: [X] -> [X]

A empty: [X]

A CONS: X [X] -> [X]

A append: [X] [X] -> [X]



i Most General Type

A For any expression, we can ask about
Its most general type (MGT)

A Generality comes from type variables
(wri tten X, Y, Z,

ADonodot use Nnanyo or
AWe wonot gl ve you pr



i Polymorphic Data Definitions

; A Pair of Xand Y, written (Pair X Y) is
; (make-Pair a b)

;, Whereaisan Xand bisayY
(define-struct Pair (first second))

A Examples:
A (make-Pai r O0a 5) 1s (Pair
A (make-Pair true 5) is (Pair bool number)



i Examples:

What 0s t he most gene
A (define (f xX) x)

A (define (f x) (make-Pair x x))

A (define (f y x) (make-Pair x y))



i Examples:

What 0s t he most gene
A (define (f xX) x)
AX-=>X
A (define (f x) (make-Pair x x))
A X -> (Pair X X)
A (define (f y x) (make-Pair x y))
A XY -> (Pair Y X)



i Examples:

What 0s t he most gene
A (define (f x y) (make-Pair x (+ 1 y)))

A (define (f x y) (make-Pair x (+ 1 x)))

A (define (f x y) (make-Pair x (y X)))



i Examples:

What 0s t he most gene
A (define (f x y) (make-Pair x (+ 1 y)))
A X number -> (Pair X number)
A (define (f x y) (make-Pair x (+ 1 x)))
A number Y -> (Pair number number)
A (define (f x y) (make-Pair x (y X)))
AX(X->Y)-> (Pair XY)



i Examples:

What 0s t he most gene
A (define (f x) (+ x 1))

A (define (f x) (cons x empty))

A (define (f x y) (cons x y))



i Examples:

What 0s t he most gene
A (define (f x) (+ x 1))
A number -> number
A (define (f x) (cons x empty))
A X -=>[X]
A (define (f x y) (cons x y))
A X [X] -> [X]



i Example:

;; reduce: A(BA->A) [B] -> A

(define (reduce base combine )
(cond
[(empty? |) base]
[else (combine (first I)
(reduce base combine (rest )))]))



i For Next Class

A Homework already online, due
Wednesday after break

A Reading:
A Ch 21: Using functional abstraction and
polymorphism

A Quiz on reading



