
Review and Most General Types

First, Some Feedback Please

ñThe book is gradually losing
comprehensibility and is consequently
making it harder and harderéò

How many agree?

Highlights from last lecture

Â One function:
;; below : lon number -> lon

;; to construct a list of those numbers

;; in alon that are below t

(define (below alon t)

(cond [(empty? alon) empty]

[else (cond [(< (first alon) t)

(cons (first alon) (below (rest alon) t))]

[else (below (rest alon) t)])]))

Highlights from last lecture

Â Another function:
;; above : lon number -> lon

;; to construct a list of those numbers

;; in alon that are above t

(define (above alon t)

(cond [(empty? alon) empty]

[else (cond [(> (first alon) t)

(cons (first alon) (above (rest alon) t))]

[else (above (rest alon) t)])]))

Highlights from last lecture

Â Capture the pattern:
;; filter1 : comparison lon number -> lon

;; to construct a list of those numbers n

;; in alon such that (test t n) is true

(define (filter1 test alon t)

(cond [(empty? alon) empty]

[else (cond [(test (first alon) t)

(cons (first alon) (filter1 test (rest alon) t))]

[else (filter1 test (rest alon) t)])]))

Highlights from last lecture

Â Write things more concisely:

Â The magic moment:

(define (below alon t) (filter1 < alon t))

(define (above alon t) (filter1 > alon t))

Â Both functions will work just as before

Highlights from last lecture

;; filter1 : (number number -> boolean) lon number -> lon
;; to construct a list of those numbers n
;; in alon such that (test t n) is true
(define (filter1 test alon t)

(cond [(empty? alon) empty]
[else (cond [(test (first alon) t)

(cons (first alon) (filter1 test (rest alon) t))]
[else (filter1 test (rest alon) t)])]))

Highlights from last lecture

;; filter1 :(X Y -> boolean) [X] Y -> [X]
;; to construct a list of those numbers n
;; in alon such that (test t n) is true
(define (filter1 test alon t)

(cond [(empty? alon) empty]
[else (cond [(test (first alon) t)

(cons (first alon) (filter1 test (rest alon) t))]
[else (filter1 test (rest alon) t)])]))

Examples:

Â length: [X] -> natural

Â first: [X] -> X

Â rest: [X] -> [X]

Â empty: [X]

Â cons: X [X] -> [X]

Â append: [X] [X] -> [X]

Most General Type

Â For any expression, we can ask about
its most general type (MGT)

Â Generality comes from type variables
(written X, Y, Z, é)

ÂDonôt use ñanyò or ñorò to get MGT

ÂWe wonôt give you problems that hard

Polymorphic Data Definitions

; A Pair of X and Y, written (Pair X Y) is

; (make-Pair a b)

; Where a is an X and b is a Y

(define-struct Pair (first second))

Â Examples:

Â (make-Pair ôa 5) is (Pair symbol number)

Â (make-Pair true 5) is (Pair bool number)

Examples:

Whatôs the most general type for:

Â (define (f x) x)

Â (define (f x) (make-Pair x x))

Â (define (f y x) (make-Pair x y))

Examples:

Whatôs the most general type for:

Â (define (f x) x)

Â X -> X

Â (define (f x) (make-Pair x x))

Â X -> (Pair X X)

Â (define (f y x) (make-Pair x y))

Â X Y -> (Pair Y X)

Examples:

Whatôs the most general type for:

Â (define (f x y) (make-Pair x (+ 1 y)))

Â (define (f x y) (make-Pair x (+ 1 x)))

Â (define (f x y) (make-Pair x (y x)))

Examples:

Whatôs the most general type for:

Â (define (f x y) (make-Pair x (+ 1 y)))

Â X number -> (Pair X number)

Â (define (f x y) (make-Pair x (+ 1 x)))

Â number Y -> (Pair number number)

Â (define (f x y) (make-Pair x (y x)))

Â X (X -> Y) -> (Pair X Y)

Examples:

Whatôs the most general type for:

Â (define (f x) (+ x 1))

Â (define (f x) (cons x empty))

Â (define (f x y) (cons x y))

Examples:

Whatôs the most general type for:

Â (define (f x) (+ x 1))

Â number -> number

Â (define (f x) (cons x empty))

Â X -> [X]

Â (define (f x y) (cons x y))

Â X [X] -> [X]

Example:

;; reduce: A (B A -> A) [B] -> A

(define (reduce base combine l)

(cond

[(empty? l) base]

[else (combine (first l)

(reduce base combine (rest l)))]))

For Next Class

Â Homework already online, due
Wednesday after break

Â Reading:
Â Ch 21: Using functional abstraction and

polymorphism

Â Quiz on reading

