
1

Syntax and Semantics of
Beginner Scheme

COMP 210, Fall 2007 2

Today’s Goals
• Tools

• A mathematical notion of formal languages
• Backus-Naur Form (BNF)

• A Grammar for Scheme
• Review of semantics
• Semantic equivalences
• Runtime errors

COMP 210, Fall 2007 3

Backus-Naur Form (BNF)
• Backus invented FORTRAN (50’s)
• Nauer worked on Algol 60 (60’s). Scheme is 70’s
• We model formal languages mathematically as:

• A set of sentences, each sentence a sequence of words
• Possibly infinite set, but still with interesting grammar

• Examples
• Language1 = {“Ringo”, “Bingo”}. Finite # sentences
• BNF is <exp-1> ::= Ringo | Bingo
• Language2 = {“A”, “A B”, “A B B”, …}. Infinite.
• BNF is <exp-1> ::= A | <exp-1> B

COMP 210, Fall 2007 4

Beginner Scheme Grammar
<var> ::= x | y | my-posn | …
// Using “…” in a BNF is a bit informal

<con> ::= true | false | 1 | -1 | .04 | …
 | ’a | ’rabbit | … // other examples?

<prm> ::= + | - | * | …

COMP 210, Fall 2007 5

Beginner Scheme Grammar
<exp> ::= <var> | <con>

| (<prm> <exp>+) // one or more
| (<var> <exp>*) // zero or more

 | (cond [<exp> <exp>]+) // not (<var> …)
 | (cond [<exp> <exp>]* [else exp])
 | (and <exp>+)
 | (or <exp>+)
// We have zero argument constructors, not functions.
// We say “pi” is a constant, but, technically, it is a variable

COMP 210, Fall 2007 6

Beginner Scheme Grammar
<val> ::= <con>

<def> ::=
 (define <var> <exp>)
 | (define (<var> <var>+) <exp>)
 | (define-struct <var> (<var>*))

// Syntax (grammar) drives semantics, just like date types
// drives programs in our recipe.

COMP 210, Fall 2007 7

Reductions
• Define the meaning (or semantics) of programs

• The basic rule (applies everywhere!)
• Start with the outermost left most expressiong

that can be evaluated

• We have already seen reductions for
• Arithmetic operations
• (+ 1 (- 3 2)) = (+ 1 1) = 2

COMP 210, Fall 2007 8

Reductions
• We have already seen reductions for (cont’d)

• Boolean operations
• (and true false) = false
• (and false (/ 1 0)) = false
• The or operator has similar, sequential semantics

• Testing equality of symbols
• (symbol=? ’Rabbit ’Wabbit) = false

• Conditional statements
• Possibly the most involved. But very useful statement

• Errors
• (error ’Label “Message”) = Label : Message

COMP 210, Fall 2007 9

Reductions
More subtle aspects of reduction
• Some definitions should be reduced first

• Variable definitions, but not function definitions
• (define simple-value (/ 1 0))

• Raises and error
• (define (my-function x) (/ 1 0))

• By itself, does not raise an error

• Some definitions introduce other definitions
• (define-struct pnt (x y))

• Introduces: make-pnt, pnt-x,pnt-y, pnt?

COMP 210, Fall 2007 10

Semantic Equivalences
• One use: Some programs have

• Different syntax
• But same semantics

• Example
• (and <exp1> <exp2>)
• (cond [<exp1> <exp2>] [else false])

• (or <exp1> <exp2>)
• (cond [<exp1> true] [else <exp2>])

COMP 210, Fall 2007 11

For Next Class
• Homework posted online

• Reading:
• Chapter 9 and companion notes
• Lists: Our first recursively defined type

• Quiz:
• Chapter 9

