
1

Simple Programs, Reduction, the
Recipe, and Errors

COMP 210, Fall 2007 2

Course Overview
¥ Data-driven program design 2-17
¥ Abstraction and good design 19-23
¥ Algorithms 25-28
¥ Accumulators 30-32
¥ Side effects 34-37
¥ Mutable structures, and objects 39-43

¥ Design Recipes
¥ Introduced and used throughout the course

COMP 210, Fall 2007 3

TodayÕs Goals
¥ Numbers as examples of basic types
¥ Primitive operations on numbers
¥ Rules for reducing programs
¥ Simple programs

 = Variables
 + Function deÞnitions
 + Function application

¥ The design recipe
¥ Errors

COMP 210, Fall 2007 4

Numbers as basic types

Used in math and in computing:
¥ Naturals: 0, 1, 2, … // ÒNumber theoryÓ
¥ Integers: -1, -12, … // include negatives
¥ Rational numbers: (3/4) , (-5/6) , …
¥ Inexact numbers: #i0.123
For all but the last kind, Scheme computes exact

results
COMP 490 project: What about the real numbers?

COMP 210, Fall 2007 5

Primitive Computation
¥ Most languages provide basic operations on values of basic types:

¥ +, -, *, sqrt, expt, remainder, log, sin
¥ Primitive computation = application of a basic operation

¥ Basic operation = Basic function
¥ Soon, we will see how to deÞne our own (non-primitive) functions

¥ Function application
¥ Syntax varies from language to language. In most languages, it is mixed.
¥ Most languages use inÞx notation for math, and preÞx notation in general.

¥ Scheme uses preÞx notation uniformly for everything
¥ (+ A B), (sqrt A), (remainder A B)
¥ Bigger example: (* (+ 1 2) (+ 3 4))
¥ How does this compare to writing 1+2*3+4 ?

¥ Scheme syntax keeps things simple and avoids possible ambiguity

COMP 210, Fall 2007 6

Reduction for primitive functions
¥ A reduction = a computational ÒatomÓ

¥ The smallest step of computation

¥ Example
(* (+ 1 2) (+ 3 4))

= (* 3 (+ 3 4))
= (* 3 7)

= 21 Goes left to right (why do we care?)
¥ The following is not an atomic step, and so not a reduction

(- (+ 1 3) (+ 1 3))
= 0

COMP 210, Fall 2007 7

Simple Programs
¥ Variables are simply names for values

¥ pi, my-SSN, album-name, tax-rate, x

¥ Function deÞnitions
¥ (define (area-of-box x) (* x x))
¥ (define (half x) (/ x 2))

¥ Function applications (just as we saw before)
¥ (area-of-box 2)
¥ (half (area-of-box 3))

Almost all functions can be written this way

COMP 210, Fall 2007 8

Reductions for deÞned functions
¥ Assume we declared the two functions

¥ (define (area-of-box x) (* x x))
¥ (define (half x) (/ x 2))

¥ Then Scheme can perform these reductions
(half (area-of-box 3)) !

= (half (* 3 3))
= (half 9) !
= (/ 9 2)
= 4.5

¥ Reduction stops when we get to a value or an error

COMP 210, Fall 2007 9

The Design Recipe
How should I go about writing programs?

1. Analyze problem and deÞne data types
2. State contract and purpose for function
3. Give examples of function use and result
4. Write the function itself
5. Test it, and record actual results of tests

The order of the steps of the recipe is important

COMP 210, Fall 2007 10

Example: Area of disk

 ;; Cont r act : area-of-ring : number number -> number Step 2
 ;; Pur pose: To compute the area of a ring whose radius is
 ;; outer and whose hole has a radius of inner
 ;; Exampl es: (area-of-ring 5 3) should produce 50.24 Step 3
 ;; (area-of-ring 5 0) should produce 78.5
 ;; Def i ni t i on: [refines steps 1-4] Step 4
 (define (area-of-ring outer inner)
 (- (area-of-disk outer)
 (area-of-disk inner)))
 ;; Test s: Step 5
 “Testing area-of-ring:” ;; Help your grader :)
 (equal? (area-of-ring 5 3) 50.24)
 (equal? (area-of-ring 5 0) 78.5)
 ;; … and other examples

Note: DonÕt use equal? or strings in Def i ni t i on yet! Use it only in Test s .

COMP 210, Fall 2007 11

The Design Recipe (Big Picture)

¥ Encourages systematic problem solving
¥ Works best if keep our functions small
¥ We will learn how to decompose problems

¥ Òto decompose a problemÓ
 = Òto structure our understanding of a problemÓ

¥ Solution structure follows that of problem
¥ This is part of datatype-driven program design

COMP 210, Fall 2007 12

Syntax Errors
¥ A syntactically correct program can be

¥ An atom, like
¥ a number 17, 4.5, #i0.34,
¥ a variable r adius , or

¥ A compound program,
¥ starting with (
¥ followed by operator

¥ then one or more programs
¥ and, Þnally, ending with)

¥ Syntax errors:
¥ 3) , (3 + 4) , (+ 3 ,)+(, …

COMP 210, Fall 2007 13

Runtime Errors
¥ Happen when operators are ÒsurprisedÓ
¥ Consider the following examples:

¥ (sqrt 1 2 3 4) ;; syntax error
¥ (18 17) ;; syntax error
¥ (/ 1 0) ;; runtime error
¥ (+ 1 “a”) ;; runtime error

¥ Try things like that in DrScheme, and make a
mental note of the error messages you get back.

COMP 210, Fall 2007 14

Logistics

¥ New homework is posted online
¥ Sign up for mailing list to get any updates, discussions
¥ Make absolutely sure you follow the recipe
¥ Partners: Talk to people after class, at lab, etc.

¥ Go to lab at any time this week (sign up there)
¥ Next online quiz:

¥ Will cover Chapters 1, 2, 3
¥ WeÕll let you know when the new system is up

