
What Makes Device Driver
Development Hard

Synthesizing Device Drivers
Roumen Kaiabachev and Walid Taha

Department of Computer Science, Rice University

Problems of More Complex Driver For Continuous Data Acquisition

Device drivers:
 Are written in low-level

languages with minimal
support for modularity and
code reuse
 Execute in the operating

system kernel. A driver code
crash takes the whole system
down

The Windows 2000 Architecture

Case Studies (Jointly With National
Instruments and Schlumberger)

Existing software high-level tools claim to
help:
 Cyclone – statically typed safe dialect of C
 Devil – DSL, high-level definition of bit-

mapped I/O
 NDL – DSL, state-machine-based model of

device resources and common device driver
operations
 BLAST – software model checking

We wrote a tiny device driver in each of the
tools to study how much and to what extent.
While there were several useful techniques
to consider, neither tool offers a systematic
way of writing device drivers.

Acknowledgements

This work is supported by
the National Science Foundation,
a Texas ATP grant
National Instruments, and
Schlumberger

How to Improve the
Development Process

We want to use high level
declarative specifications to
generate device drivers which
model operating system
processes and correctly
communicate with the
hardware.

We are designing and
implementing a domain-specific
language (DSL) RIDL which will
provide the formal theory and
software engineering medium
for development of device
drivers.

 {3} Wait strategy. There a number of ways to wait when requested data is
not yet available.

 {4} Page locking. Memory accessed from an interrupt-service routine (ISR)
or as part of a direct memory access transfer must be "page-locked" to
prevent pages from being swapped out.

 {5} Atomic device access. The device can be concurrently accessed from
both the ISR and from a user process calling device code. The driver has to
guarantee the ISR atomic access until it is done unless it is interrupted by a
higher priority interrupt.

 {6} Buffer overflow. In the case of a buffer overflow, the driver has to
indicate missed data to the user application.

 {7} Bad parameters. The driver should detect bad parameters passed to
the device.

 {8} Handling device reset. The driver should support a reset function that
stops any ongoing acquisition and returns the device to an initial state.

How RIDL Will Solve These Problems

 We will use a higher-level representation of
the physical device state to tackle {1}, {2},
{3}, {4}, {6}, {8}

 We will use types for safe locking and will
explicitly model an interrupt scheduler
(constraints will be applied from defined
scheduling requirements). {5}

 We will use Devil-like interface checking
and a BLAST-like approach to guarantee that
certain user-specified states cannot be
reached. {7}

Handling Other Driver Problems We will expand RIDL to handle other
interesting device driver paradigms and make it a useful tool for driver
writers.

 {1} Resource tracking. It is illegal to start an acquisition at the same time
another one is already running. Similarly, it is invalid to read data or stop an
acquisition if none is running.

 {2} Buffering. Data acquired continuously is transferred in the background
from a small hardware buffer on the device to a larger buffer in computer
memory. There are several ways to buffer data until an application can read it.

