Roumen Kaiabachev and Walid Taha
Department of Computer Science, Rice University

. . session i Replicator Win3z2
What Makes Device Driver e JI . 8 POSIK
Development Hard ——
Processes

Device drivers:

= Are written in low-level
languages with minimal
support for modularity and

User

Kernel
Executive Services API

Security Processes! Object Memory Win32
Monitor Threads Services Mgmt Gl

code reuse Object Management
R = Devic 5
= Execute in the operating orves FEae) RTL
system kernel. A driver code Hardace Nbstinction Kayes (AL
DMABus Cache Clocks! Privileged Interrupt
crash takes the whole system Devicss Conrol_ Control _ Timers _ ArctWecure _Dispaten
down

The Windows 2000 Architecture

How to Improve the

Development Process Case Studies (Jointly With National

Instruments and Schlumberger)

We want to use high level Existing software high-level tools claim to
declarative specifications to help:

generate device drivers which = Cyclone — statically typed safe dialect of C
model operating system = Devil — DSL, high-level definition of bit-
processes and correctly mapped 1/0

communicate with the = NDL — DSL, state-machine-based model of
hardware. device_resources and common device driver
operations

We are designing and BLAST — software model checking
implementing a domain-specific \ye wrote a tiny device driver in each of the
language (DSL) RIDL which will tools to study how much and to what extent.
provide the formal theory and While there were several useful techniques
software engineering medium to consider, neither tool offers a systematic
for development of device way of writing device drivers.

drivers.

Problems of More Complex Driver For Continuous Data Acquisition

{3} Wait strategy. There a number of ways to wait when requested data is
not yet available.

{4} Page locking. Memory accessed from an interrupt-service routine (ISR)
or as part of a direct memory access transfer must be "page-locked" to
prevent pages from being swapped out.

{5} Atomic device access. The device can be concurrently accessed from
both the ISR and from a user process calling device code. The driver has to
guarantee the ISR atomic access until it is done unless it is interrupted by a
higher priority interrupt.

{6} Buffer overflow. In the case of a buffer overflow, the driver has to
indicate missed data to the user application.

{7} Bad parameters. The driver should detect bad parameters passed to
the device.

{8} Handling device reset. The driver should support a reset function that
stops any ongoing acquisition and returns the device to an initial state.

{1} Resource tracking. It is illegal to start an acquisition at the same time
another one is already running. Similarly, it is invalid to read data or stop an
acquisition if none is running.

{2} Buffering. Data acquired continuously is transferred in the background
from a small hardware buffer on the device to a larger buffer in computer
memory. There are several ways to buffer data until an application can read it.

How RIDL Will Solve These Problems

= We will use a higher-level representation of
the physical device state to tackle {1}, {2},
{3}, {4}, {6}, {8}

= We will use types for safe locking and will
explicitly model an interrupt scheduler

(constraints will be applied from defined

scheduling requirements). {5} Felampedizel e e

. v . This work is supported by
= We will use Devil-like interface checking the National Science Foundation,

and a BLAST-like approach to guarantee that |a Texas ATP grant

certain user-specified states cannot be Heanel [TSUTENES, G
Schlumberger

reached. {7}

Handling Other Driver Problems We will expand RIDL to handle other
interesting device driver paradigms and make it a useful tool for driver
writers.

