
Programming Language Support for Generic Libraries
Jeremy Siek and Walid Taha

Abstract

The generic programming methodology is revolutionizing the way we
develop software libraries, drastically increasing their adaptability while
retaining  high performance. Examples of successful generic libraries
include:
• Standard Template Library (Stepanov, Lee),
• Boost Graph Library (Siek, Lee, Lumsdaine),
• Blitz++ (Veldhuizen).
Current programming languages provide only partial support for generic
programming, making the development and use of generic libraries more
difficult than necessary. The goal of our research is to improve language
support for generic programming.

Generic libraries rely on two key language technologies:
• Type parameters constrained with concepts,
• Metaprogramming.

What is wrong with C++ templates?

• Error messages are indecipherable.

• Bugs lurk in generic libraries.

• Compilation time is slow.

// buggy program
int main() {
  list<int> l;
  stable_sort(l.begin(), l.end());
}

stl_algo.h: In function `void std::__inplace_stable_sort(_RandomAccessIter, _RandomAccessIter)     [with _RandomAccessIter =
std::_List_iterator<int, int&, int*>]':stl_algo.h:2565:   instantiated from `void std::stable_sort(_RandomAccessIter, _RandomAccessIter)
[with _RandomAccessIter = std::_List_iterator<int, int&, int*>]'stable_sort_error.cpp:5:   instantiated from herestl_algo.h:2345: error:
no match for `std::_List_iterator<int, int&, int*>& - std::_List_iterator<int, int&, int*>&' operatorstl_algo.h:2565:   instantiated from
`void std::stable_sort(_RandomAccessIter, _RandomAccessIter)     [with _RandomAccessIter = std::_List_iterator<int, int&,
int*>]'stable_sort_error.cpp:5:   instantiated from herestl_algo.h:2349: error: no match for `std::_List_iterator<int, int&, int*>& -
std::_List_iterator<int, int&, int*>&' operatorstl_algo.h:2352: error: no match for `std::_List_iterator<int, int&, int*>& -
std::_List_iterator<int, int&, int*>&' operatorstl_algo.h:2352: error: no match for `std::_List_iterator<int, int&, int*>& -
std::_List_iterator<int, int&, int*>&' operatorstl_algo.h: In function `void std::__stable_sort_adaptive(_RandomAccessIter,
_RandomAccessIter, _Pointer, _Distance)     [with _RandomAccessIter = std::_List_iterator<int, int&, int*>, _Pointer = int*, _Distance =
int]':stl_algo.h:2567:   instantiated from `void std::stable_sort(_RandomAccessIter, _RandomAccessIter)    [with _RandomAccessIter =
std::_List_iterator<int, int&, int*>]'stable_sort_error.cpp:5:   instantiated from herestl_algo.h:2497: error: no match for
`std::_List_iterator<int, int&, int*>& - std::_List_iterator<int, int&, int*>&' operatorstl_algo.h:2498: error: no match for
`std::_List_iterator<int, int&, int*>& + int&' operatorstl_algo.h:2567:   instantiated from `void std::stable_sort(_RandomAccessIter,
_RandomAccessIter)

What is generic programming?

• Parameterize algorithms on the data-
structure type.

• Capture the essential properties of
the data-structures needed to
implement the algorithm.

• Group these properties into
“concepts”.

• Perform dispatching at compile time,
ensuring maximum run-time
performance.

sort<S>
merge<S1,S2>

transform<S1,S2>
partition<S>

max_flow<G>
shortest_paths<G>
isomorphic<G1,G2>

What is a “concept”?

• A special kind of interface.

• Consists of requirements such as:

• function signatures,

• helper types,

• other concepts (think inheritance),

• efficiency requirements.

Sequence

array

list
deque

What is a constraint?

• Algorithms must make assumptions
about what operations are available
on a data-structure.

• Express these assumptions by
requiring a type parameter to satisfy
a concept.

sort<S> where 
  S satisfies Sequence

max_flow<G> where
  G satisfies Graph

What is metaprogramming?

What is the root of the problem?
• Templates are type checked after instantiation, for

each use site.

• Template libraries are not separately compiled, but
included as header files.

• There are no constraints on template parameters.

• Templates are just a better behaved form of macro

template<typename T>
T min(T a, T b) {
  if (b < a) return b;
  else return a;
}

A prototype language: G concept Comparable<X> {
  fun operator<(X, X) -> bool;
};

// Ok, implementation is valid
fun min<T> where { Comparable<T> }
(T a, T b) -> T {
  if (b < a) return b;
  else return a;
}
// Ok, int satisfies Comparable
model Comparable<int> { };

min(1,2); // Ok, constraint satisfied

• Concepts and constraints are part of the language

• Templates are type checked separately from their use

• Templates are separately compiled to object files

• Much better error messages

• Uncovers bugs in generic algorithms

fun main() -> int {
  let v = list<int>();
  stable_sort(begin(v), end(v));
  return 0;
}

Error: In application stable_sort(begin(v), end(v)),
Model RandomAccessIterator<list_iter<int>> needed to satisfy requirement,
but it is not defined.

Work on the C++ Standards Committee to add Concepts

• Wrote a proposal to add concepts to C++: paper N1849.

•http://www.open-std.org/jtc1/sc22/wg21/

• Implemented the proposal in the GNU C++ compiler: paper N1848.

• Look for concepts in C++200X!

• Compile-time computation, often performing code generation.

• Metaprogramming can be done in C++ using templates.

template<int n>
struct fact {
  static const int result = n * fact<n-1>::result;
};
template<>
struct fact<0> {
  static const int result = 1;
};
// compute factorial of 5 at compile time
// and use as size for array.
int array[fact<5>::result];

What is metaprogramming used for?
• Self-optimizing libraries, such as Blitz++, perform loop fusion

and loop unrolling to speed computation on arrays.

• User-configurable data-structures, such as a graph class that
can be optimized for fast traversal or for vertex and edge
insertion and removal.

How are we improving  metaprogramming?
• Create better type systems to catch bugs in the metaprograms

and to catch bugs in the generated programs.

• Simplify language constructs for metaprogramming.
(Metaprogramming with templates is baroque!)

Acknowledgments

Further reading

A

B C

+

+

for (i=0…n)
  tmp1[i] = B[i] + C[i]
for (i=0…n)
  tmp2[i] = A[i] + tmp1[i]

for (i=0…n)
  tmp2[i] = A[i] + B[i] + C[i]

• This project is funded by the National Science Foundation.

• Thanks to our collaborators Andrew Lumsdaine and members
of the Open Systems Laboratory at Indiana University.

• Part of this work were also supported by NSF grant EIA-
0131354 and by a grant from the Lilly Endowment.

• Essential language support for generic programming. Jeremy Siek and
Andrew Lumsdaine. In Programming Language Design and
Implementation 2005.

• Environment Classifiers. Walid Taha and Michael Nielsen. In Principles
of Programming Languages 2003.

• A Comparative Study of Language Support for Generic Programming.
Ronald Garcia, Jaakko Jarvi, Andrew Lumsdaine, Jeremy Siek,
Jeremiah Willcock. In OOPSLA'03.


