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Introduction Multi-stage Programming and Program Generation
Despite the popularity of visual programming languages in many fields, the tools used to develop Generators allow programmers (o write geperal algorithms in a natural way and then generate
systems 1n these languages have not received as much attention as more traditional textual Instances Of those glgonthm to handle specna.l Cases. This allows programmers to use abstract%on
programming languages have received. This 1s especially true 1n the aspects of static type systems and without paying for It 1n.runt1me—ov.er1.16ad. An 1llustrative example of using multi-stage programming
program verification tools. We look to develop a more direct correspondence between the textual and for program generation 1s exponentiation.
visual representations of programs in order to be able to use existing tools when working with
graphical languages. This requires us to formalize a textual representation for graphs as well as Unstaged Power Function Power Function with Staging Annotations

systems which can translate between the two formats.
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* Syntax needed for both the visual and textual language. 1 ¢ )of
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* Establish a direct correspondence between the textual and visual representations of programs. o ) ’
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Approach ¢ p—
In order to make the correspondence between graph and text complete, we are developing an X © i
integrated development environment (IDE) which allows direct translation between the two o
representations as well as the ability to modify either representation. This required several problems to
be addressed:
* The development of concrete syntax for the graphical and textual languages let rec power = fun x n —-> let rec power = fun x n ->
. . . . . 1f 1szero? n then 1 1f 1szero? n then .<1>.
* The implementation of algorithms to translate between the textual and graphical representations else clse
* The development of a system for rendering the visual representation and allowing direct editing of x * (power x (n-1)) <.vx * oL~ (power x (n=1))>.
1ts entities . . ,
A simple implementation Of power can be PreVIEW adds multi-stage programming
written in PreVIEW and visualized as a gmph. techniques which are shown in the graph uSlng
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