
PreVIEW: A Model for Supporting Higher-order, Generative
Programming in Visual Languages

Gregory Malecha
gmalecha@rice.edu

Walid Taha
taha@rice.edu

Introduction
Despite the popularity of visual programming languages in many fields, the tools used to develop
systems in these languages have not received as much attention as more traditional textual
programming languages have received. This is especially true in the aspects of static type systems and
program verification tools. We look to develop a more direct correspondence between the textual and
visual representations of programs in order to be able to use existing tools when working with
graphical languages. This requires us to formalize a textual representation for graphs as well as
systems which can translate between the two formats.

Problem
• Syntax needed for both the visual and textual language.
• Establish a direct correspondence between the textual and visual representations of programs.

Approach
In order to make the correspondence between graph and text complete, we are developing an
integrated development environment (IDE) which allows direct translation between the two
representations as well as the ability to modify either representation. This required several problems to
be addressed:

• The development of concrete syntax for the graphical and textual languages

• The implementation of algorithms to translate between the textual and graphical representations

• The development of a system for rendering the visual representation and allowing direct editing of
its entities

Future Work
• More sophisticated graph layout using routing and positioning algorithms developed by Eschbach,
Gunther, and Becker at VLSID '05

• Develop static type systems for the visual language

• Implementation of reduction semantics and execution engine

• Incremental translations between graphical and textual representations

let rec power = fun x n ->
 if iszero? n then .<1>.
 else
 .<.~x * .~(power x (n-1))>.

Multi-stage Programming and Program Generation
Generators allow programmers to write general algorithms in a natural way and then generate
instances of those algorithm to handle special cases. This allows programmers to use abstraction
without paying for it in runtime-overhead. An illustrative example of using multi-stage programming
for program generation is exponentiation.

Unstaged Power Function Power Function with Staging Annotations

Generator for power(-,3) Generated Code for Cube

PreVIEW SyntaxAriola & Blom SyntaxLabVIEW Syntax Figure 1: In choosing
the syntax for the visual
representation, we
chose a mixture of the
syntax developed by
Ariola & Blom and the
LabVIEW syntax. Note
that the PreVIEW
graph and the lambda-
graph (Ariola & Blom)
are dual graphs.

Generates

Concrete Syntax

Translation Algorithms

let rec power = fun x n ->
 if iszero? n then 1
 else
 x * (power x (n-1))

let cube = .~fun x ->
 !(power .<x>. 3)

let cube = fun x ->
 1 * x * x * x

Visualizations generated from PreVIEW and manually laid out.

A simple implementation of power can be
written in PreVIEW and visualized as a graph.

PreVIEW adds multi-stage programming
techniques which are shown in the graph using
different shades of gray to show the escape
level that a term is at.

Once written with multi-stage annotations, the
programming language can generate code for
special cases of the function.

The interpreter or compiler generates a special
form of the power function to compute the cube
of a number. The generated code removes the
inefficiencies allowing the programmer to
utilize abstraction without paying a price at
runtime.

The textual form
of the program is
written in a
functional
normal form in
which all sub-
computations are
named. This
allows
unambiguous
representations
of programs as
graphs.

The visual
form of the
graph allows
direct editing
with the
mouse.

Textual representation of the graph provides an intermediate form which
can be easily saved and efficiently expresses the data in the graph.

Arrows
represent
translations
between the
different
representations

