PreVIEW: A Model for Supporting Higher-order, Generative
Programming In Visual Languages

Gregory Malecha Walid Taha
gmalecha@rice.edu taha@rice.edu

Introduction Multi-stage Programming and Program Generation
Despite the popularity of visual programming languages in many fields, the tools used to develop Generators allow programmers (o write geperal algorithms in a natural way and then generate
systems 1n these languages have not received as much attention as more traditional textual Instances Of those glgonthm to handle specna.l Cases. This allows programmers to use abstract%on
programming languages have received. This 1s especially true 1n the aspects of static type systems and without paying for It 1n.runt1me—ov.er1.16ad. An 1llustrative example of using multi-stage programming
program verification tools. We look to develop a more direct correspondence between the textual and for program generation 1s exponentiation.
visual representations of programs in order to be able to use existing tools when working with
graphical languages. This requires us to formalize a textual representation for graphs as well as Unstaged Power Function Power Function with Staging Annotations

systems which can translate between the two formats.

1

iszero if if
Problem X :
* Syntax needed for both the visual and textual language. 1 ¢)of
@ 'V--)I
* Establish a direct correspondence between the textual and visual representations of programs. o) ’
- = ul
Approach ¢ p—
In order to make the correspondence between graph and text complete, we are developing an X © i
integrated development environment (IDE) which allows direct translation between the two o
representations as well as the ability to modify either representation. This required several problems to
be addressed:
* The development of concrete syntax for the graphical and textual languages let rec power = fun x n —-> let rec power = fun x n ->
. 1f 1szero? n then 1 1f 1szero? n then .<1>.
* The implementation of algorithms to translate between the textual and graphical representations else clse
* The development of a system for rendering the visual representation and allowing direct editing of x * (power x (n-1)) <.vx * oL~ (power x (n=1))>.
1ts entities . . ,
A simple implementation Of power can be PreVIEW adds multi-stage programming
written in PreVIEW and visualized as a gmph. techniques which are shown in the graph uSlng

Concrete Syntax . , different shades of gray to show the escape
LabVIEW Syntax Ariola & Blom Syntax PreVIEW Syntax Figure 1. In choosing level that a term is at.

| the syntax for the visual
N Y
l .
/ | A £ r Zp res entqtzton, W;th Visualizations generated from PreVIEW and manually laid out.
chose a mixture of the
A i
11+1@ syntax developed b
f | bhes 5‘5 ’ N Aym. ola & BI OIZ o dy the Generator for power(-,3) Generated Code for Cube
= /+ (:E LabVIEW syntax. Note pover '
+ L + that the PreVIEW .)
Y graph and the lambda- -
" graph (Ariola & Blom) — -l Hr-»D—- Generates : HL
I are dual graphs. 3 @ @
1
Translation Algorithms
=0 x|
File Debugging Options Help — _
mmmmm1 mmme _J Th . l let CUbe — .Nfun X _> let §Ube* ffn % >
The textual form [®555" = - fmjﬂ "g}/‘tjw | (power .<x>. 3) Lo x ® x 7
of the program is il o R . . .
written in a o I graph allows | S | , The interpreter or compiler generates a special
functional — = Ea direct editing Once wrlttgn witn multi-stage annotations, tne form of the power function to compute the cube
normal form in I rsars it with the programming language can generate code for of a number. The generated code removes the
N % | [— Mouse special cases of the function. : oncies allowine th /
which all sub- - : m?jfzczenczes allowing the programmer to
computations are ¢ p—] utzlzz.e abstraction without paying a price at
named. This | runtime.
allows nl v
. Texztual Graph
unambiguous N
representations |uwd.. - 5
fapl : apply[l].
of programs as | = bl Future Work
apd - apply[2].
graphs i oEn Arrows y - o
et Tl SR represent * More sophisticated graph layout using routing and positioning algorithms developed by Eschbach,
| containe (apd, ap5) translations Gunther, and Becker at VLSID '05
contains {apl, apiZ, brl, bri}}
- 11 between the . .
d; o different * Develop static type systems for the visual language
{épi.}cuﬁil.—iezggéérg o]. H | "
RSN i £ Scope: a1 Element: lat representations * Implementation of reduction semantics and execution engine
T extzal rep;esentcgzondof];iqe. gr;zlph provides tc;ln Zztfrn.fzec;’];ate fOWZlft which * Incremental translations between graphical and textual representations
can be easily saved and efficiently expresses the data in the graph.

